Predicting Bankruptcy with Robust Logistic Regression
نویسندگان
چکیده
Using financial ratio data from 2006 and 2007, this study uses a three-fold cross validation scheme to compare the classification and prediction of bankrupt firms by robust logistic regression with the Bianco and Yohai (BY) estimator versus maximum likelihood (ML) logistic regression. With both the 2006 and 2007 data, BY robust logistic regression improves both the classification of bankrupt firms in the training set and the prediction of bankrupt firms in the testing set. In an out of sample test, the BY robust logistic regression correctly predicts bankruptcy for Lehman Brothers; however, the ML logistic regression never predicts bankruptcy for Lehman Brothers with either the 2006 or 2007 data. Our analysis indicates that if the BY robust logistic regression significantly changes the estimated regression coefficients from ML logistic regression, then the BY robust logistic regression method can significantly improve the classification and prediction of bankrupt firms. At worst, the BY robust logistic regression makes no changes in the estimated regression coefficients and has the same classification and prediction results as ML logistic regression. This is strong evidence that BY robust logistic regression should be used as a robustness check on ML logistic regression, and if a difference exists, then BY robust logistic regression should be used as the primary classifier.
منابع مشابه
Bankruptcy Prediction of Listed Corporations in Tehran Stock Exchange Using Data Mining Techniques
Aims: This study aimed at predicting bankruptcy based on two data mining techniques, i.e. logistic regression and classification and regression tree (CART). Study design: This was an applied, descriptiveanalytical, cross-sectional study. Place and Duration of Study: This research was carried out in Iran. Annual financial statements of companies in Tehran stock market (Iran) during 1999-2010 wer...
متن کاملA Heuristic Model for Predicting Bankruptcy
Bankruptcy prediction is one of the major business classification problems. The main purpose of this study is to investigate Kohonen self-organizing feature map in term of performance accuracy in the area of bankruptcy prediction. A sample of 108 firms listed in Tehran Stock Exchange is used for the study. Our results confirm that Kohonen network is a robust model for predicting bankruptcy in ...
متن کاملVariable Selection Method Affects SVM Approach in Bankruptcy Prediction
This paper examined bankruptcy predictive accuracy of five statistics models-discriminant analysis logistic regression, probit regression, neural networks, support vector machine (SVM), and genetic-based SVM (GA-SVM) that influenced by variable selection. Empirical results indicate that the SVM-based models are very promising models for predicting financial failure, in terms of both best predic...
متن کاملApplication of Genetic Algorithm in Development of Bankruptcy Predication Theory Case Study: Companies Listed on Tehran Stock Exchange
The bankruptcy prediction models have long been proposedas a key subject in finance. The present study, therefore, makes aneffort to examine the corporate bankruptcy prediction through employmentof the genetic algorithm model. Furthermore, it attempts to evaluatethe strategies to overcome the drawbacks of ordinary methods forbankruptcy prediction through application of genetic algorithms. Thesa...
متن کاملDesigning a Bankruptcy Prediction Model Based on Account, Market and Macroeconomic Variables (Case Study: Cyprus Stock Exchange)
The development of the Cyprus Stock Exchange together with the increasing trend of investors’ presence in financing activities has led to the importance of this market. In such circumstances, the first step towards a sustainable development of the Exchange is to support the investors. Risk of bankruptcy for the investee is a major challenge that an inexperienced stock investor encounters. In th...
متن کامل